I am an ecologist and evolutionary biologist interested in plant-microbiome relationships. My work combines largescale observations, mechanistic experiments, and molecular approaches to explore how plants interact with their associated microbes, why these interactions vary under different environments, and what effect these interactions have on the ecology and evolution of populations, communities, and ecosystems.


I am currently a postdoc in the Peay Lab at Stanford University working on the biogeography of plant-fungal symbioses and how they influence species geographic distributions and coexistence. I completed my PhD in the Schweitzer Lab at the University of Tennessee where I focused on the eco-evolutionary dynamics of plant-soil interactions and their response to global change.




Microbial drivers of diversity and function

Plants assemble, defend themselves from, and form symbioses with highly diverse microbial communities. These relationships affect individual plant performance, influence population dynamics that shape community composition, and help determine the productivity and biogeochemical cycles of entire ecosystems. My research explores plant-microbe interactions behind patterns of biodiversity and ecosystem function.

Community and ecosystem genetics 

Plants alter soil properties and communities through functional traits that can be heritable and evolve along selective gradients. As a result, the ecology of plant-soil interactions can be tied to their evolutionary processes, and vice versa. I study how these types of eco-evolutionary dynamics play out in plant-soil-microbial linkages, and how environmental change will alter the connections between genes, communities, and ecosystems.

Plant-soil linkages and global change

Plants might adapt to increasingly stressful climates, persist via phenotypic plasticity, or shift their distributions to remain within their climatic niche. Under these scenarios, interactions between plants and their microbial communities are likely to mediate fitness responses, the expression of certain phenotypes, and future range limits. One of my primary research goals is to advance understanding of how plant responses to global change are mediated by the diversity and functioning of their microbiome.




B S Steidinger, T W Crowther, J Liang, M E Van Nuland, G D A Werner, P B Reich, et al. (2019) Climatic controls of decomposition drive the global biogeography of forest tree symbioses. Nature, 569, 404-408.

M E Van Nuland, M Chen, & B J England (2019) Bringing plants and soils to life through a simple role-playing activity. The American Biology Teacher, 81, 287-290.

I M Ware, M E Van Nuland, J A Schweitzer, et al. (2019) Climate-driven reduction of genetic variation in plant phenology alters soil communities and nutrient pools. Global Change Biology, 25, 1514-1528.

I M Ware, C Fitzpatrick, S Athmanathan, S Bayliss, K Beal, L Mueller, J Summers, R Wooliver, M E Van Nuland, et al. (2019) Feedbacks link ecosystem ecology and evolution: an eco-evolutionary synthesis across terrestrial and aquatic systems. Functional Ecology, DOI: 10.1111/1365-2435.13267.

M E Van Nuland, I M Ware, J K Bailey, & J A Schweitzer (2018) Ecosystem feedbacks contribute to geographic variation in plant-soil eco-evolutionary dynamics across a fertility gradient. Functional Ecology, 33, 95-106.

R C Wooliver, B M Potts, J K Senior, M E Van Nuland, J K Bailey, & J A Schweitzer (2018) Soil fungi underlie phylogenetic patterns in plant growth responses to nitrogen enrichment. Journal of Ecology, DOI: 10.1111/1365-2745.12983.

J A Schweitzer, M E Van Nuland, & J K Bailey (2018) Intraspecific positive, neutral, and negative feedbacks across gradients link ecology and evolutionary biology. In Aboveground-Belowground Community Ecology, Springer.

M E Van Nuland, J K Bailey, & J A Schweitzer (2017) Divergent plant-soil feedbacks influence range dynamics and ecosystem processes across elevation. Nature Ecology & Evolution, 1, DOI: 10.1038/s41559-017-0150.

A A Pfennigwerth, M E Van Nuland, J K Bailey, & J A Schweitzer (2017) Plant-soil feedbacks mediate shrub expansion in declining forests, but only in the right light. Journal of Ecology, DOI: 10.1111/1365-2745.12833.

M E Van Nuland, R C Wooliver, A A Pfennigwerth, Q D Read, I M Ware, L Mueller, J A Fordyce, J A Schweitzer, & J K Bailey (2016) Plant-soil feedbacks: connecting ecosystem ecology and evolution. Functional Ecology, 30, 1032-1042.

M E Van Nuland & W L Whitlow (2014) Temporal effects on biodiversity and composition of arthropod communities along an urban-rural gradient. Urban Ecosystems, 1-14.

J K Bailey, M A Genung, I Ware, C E Gorman, M E Van Nuland, et al. (2013) Indirect genetic effects: An evolutionary mechanism linking feedbacks, genotypic diversity and coadaptation in a climate change context. Functional Ecology, 28, 87-95.

C E Gorman, Q D Read, M E Van Nuland, J A M Bryant, J N Welch, et al. (2013) Species identity influences belowground arthropod assemblages via functional traits. Annals of Botany Plants, DOI: 10.1093/aobpla/plt049.

M E Van Nuland, E N Haag, J A M Bryant, Q D Read, R N Klein, et al. (2013) Fire promotes pollinator visitation: Implications for ameliorating declines of pollinator services. PLoS ONE, e79853.

Data & code